

Keywords

divide	DNA	cancer	glitches	blood
e,	volution	errors	duplicating	engineered

A. Fill in the blanks with the correct word from the keywords above:

Nearly every cell in the body contains all of	the needed to make a whole new			
human. Each cell is like a little robot, that ha	as its own tasks that keep the body working.			
When it comes to the DNA code, important	tasks for the cell include; safeguarding the			
code, the code and pas	sing it on. Because the DNA code is so long,			
happen every time that the code is	s copied. Most of these errors result in no			
change to the function of a cell. Sometimes	they can make the cell less good, or even,			
better at surviving. The passing on of errors	s, or in the code that makes an			
organism better off is called Sometimes a copying error causes a cell to				
uncontrollably, multiplying into a	CAR T-Cells are an exciting new way to			
destroy cancer cells. These CAR T-cells are	e by synthetic biologists to			
recognise a patient's own cancer cells, and are proving to be an excellent treatment for				
cancers and potentially others in the	future.			

B. Biohacker checklist:

The biohackers have copied down their instructions for generating CAR-T cells into boxes, but have got them arranged in the wrong order! Draw a line connecting the boxes to put them right:

:

Insert the engineered genetic code into the patients T-Cell using a vector

Inject the patient with the CAR T-Cells

Generate the genetic code using a DNA printer

Collect a patient's T-Cells
START HERE

Identify and kill the patient's cancer cells

Rewrite the T-Cell genetic code to be able to recognise the patient's specific tumor antigens

Model what the newly engineered genetic code will do on a computer

C. Biohacker pop-quiz:

Team up with the 4 billion year old meat robot next to you, and answer the following questions:

- 1/ Each human body (or meat robot) contains how many cells? Circle the correct answer:
 - 50 million
 - 2 billion
 - 30 trillion
 - 700 trillion
- 2/ Two important white-blood cell types are T-cells and B-cells. These are a critical part of the body's defence barrier against invading pathogens. What is this system called?
- 3/ Can you name two types of pathogen that attack humans?
- 4/ What are the protein fragments on the surface of pathogens that B and T-cells recognise called?
- 5/ Why are our normal B and T-cells not very good at recognising and identifying cancer cells?
- 6/ What are two common approaches that doctors and surgeons use to attack cancer?

7/ CAR T-Cells have their DNA changed by biohackers to give them new genetic code, or instructions.

These new instructions allow them to recognise a patient's own cancer cells, divide once they find a cancer cell, but also:

8/ CAR T-cells can be thought of as a living drug. What is one advantage of CAR T-cells over conventional approaches?
9/ Can you name a current disadvantage of CAR T-cell therapy?
10/ CAR T-cell therapy has lead to patients going into remission and staying in remission. This means that they are likely to survive for: (circle the correct answer)
as long as they would without therapy longer than they would otherwise
Bonus Questions: 1 The technologies that biohackers can use to engineer bespoke CAR T-Cells are constantly advancing. How do you think that breakthroughs in artificial intelligence and robotics might affect CAR T-Cell therapy?
2. CAR-T cells are an example of a chimeric (chimera) cell. In ancient Greek mythology, a chimera was a fire-breathing monster that had three parts. The head of a body of a and the tail of a