Seismic imaging technology could deliver finely detailed images of the human brain

Scientists have developed a new computational technique that could lead to fast, finely detailed brain imaging with a compact device that uses only sound waves.

The UCL and Imperial College London researchers say their proof-of-concept study, published today in npj Digital Medicine, paves the way for the development of high-fidelity clinical imaging of the human brain that could be superior to existing technology.

Unlike existing brain imaging methods like MRI, CT and PET scanning, the full waveform inversion (FWI) technology could be applied to the imaging of any patient, and could be suitable for the continuous monitoring of high-dependency patients.

The researchers are confident the technology will be safe as sound waves are already used for ultrasound scanning and this technology uses similar sound intensities. Ultrasound cannot easily penetrate through bone, whereas the new device, which is designed to be worn like a helmet, is able to overcome this barrier.

The new approach is of special value in patients investigated for stroke – where rapid, universally applicable, high-fidelity imaging is essential. 

Lead author Dr Lluís Guasch, of Imperial’s Department of Earth Science and Engineering, said: “An imaging technique that has already revolutionised one field – seismic imaging – now has the potential to revolutionise another – brain imaging.”

Professor Bryan Williams Director NIHR UCL Hospitals Biomedical Research Centre, which supported the research, said: “This is an extraordinary and novel development in brain imaging which has huge potential to provide accessible brain imaging in routine clinical practice to evaluate the brain in head trauma, stroke and a variety of brain diseases.

“If this lives up to its promise it will be a major advance. It is also a fabulous illustration of how the collaboration between engineers and clinicians, using methods from another sphere of science, can bring ground-breaking innovation into medical care.”

MRI is generally the best method for obtaining high-resolution images of the brain, and its use is currently essential to the investigation of many neurological disorders including stroke, brain cancer, and brain injury.

Nonetheless, MRI requires large, expensive, non-portable machines and it cannot be used on all patients.

Study co-author Professor Parashkev Nachev, of UCL, said: “This is a vivid illustration of the remarkable power of advanced computation in medicine. Combining algorithmic innovation with supercomputing could enable us to retrieve high-resolution images of the brain from safe, relatively simple, well-established physics: the transmission of soundwaves through human tissue.

“The practicalities of MRI will always limit its applicability, especially in the acute setting, where timely intervention has the greatest impact. Neurology has been waiting for a new, universally applicable imaging modality for decades: full-waveform inversion could well be the answer.”

Next, the researchers will build a new prototype for live imaging of normal human brains as the first step to a device that could be evaluated in clinical contexts.

Title image credit: Guasch et al.